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HYDRODYNAMICS OF A SYSTEM OF BUBBLES IN A LOW-VISCOSITY LIQUID
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This paper deals with the effect of the gas content and the shape of
the space occupied by a system of bubbles on the rate at which the
bubbles rise in an infinite medium and in a vertical cylindrical
column. Deformations of the system favorable from the energy
point of view are considered for an assumed homogeneous and iso~
tropic distribution of bubbles in the system.

A theoretical description of the motion of gas bubble systems in
liquids is necessary for the study of bubbling processes. This prob-
iem has been frequently considered for low Reynolds numbers

(Re «< 1) on the basis of the so-called cell model. In[1] an anal-
ogous model was used to describe the motion of a system of medinm-
size bubbles (Re < 300). It was assumed that each bubble is at any
instant of time in the center of an imaginary spherical cell of liquid
the radius of which equals the average distance between the centers
of bubbles in the system. The normal component of the velocity of
the liquid and the surface of the cell is zero, The formier assump-
tion is equivalent to the assumption of homogeneity and isotropy of
the system, but the latter is by no means physically convincing.

In the present paper we calculate the rising velocity of a system of
medium-size bubbles in a liquid with low gas content; these resules
differ even qualitatively from those obtained on the basis of the

cell model. This apparently suggests that the cell model is un~
satisfactory, at least in the case of a liquid with low gas content.

1. Formulation of the problem, It is assumed that
all bubbles have the same radius R and the rising ve-
locity of the bubbles is independent of time. Levich
[2] showed that the motion of a single bubble with ra-
dius R < 0,05 cm in a liquid with a kinematic viscosity
v~ 0.01 cm?®/sec is approximately the same as that
of an ideal liquid provided that surface-active sub~
stances are absent, Therefore as a first approxima-
tion for a system of medium-size gas bubbles for
which a (average center distance) is much larger than
the bubble dimensions we may assume an irrotational
flow of an ideal liquid about a system of N spheres,
the centers of which are located at points rj with co-
ordinates ria (=1, 2, 3,i=1,..., N). ‘

In order to determine the velocity of the potential
flow v = V& it is necessary to solve the Laplace equa-
tion

A® = 0 in the region, except for r/< R,

r =|r/|, ro=r—r, (1.1)
with boundary conditions expressing the fact that the
radial component of the flow velocity vanishes on the
surface of the i~-th sphere in a coordinate system mov-

ing with the i-th sphere
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(1.2)
where uf is the velocity component of the i~th bubble,

In (1.2) and in what follows we take the summation
with respect to the repeated Greek indices. We seek

® in a coordinate system in which the liquid is at rest

as r — «, It is obvious that this can be achieved by
imposing the condition

O—=0 as rooo, (1.3)

2. Velocity field potential. We seek the solution of
Eq. (1.1), which satisfies the boundary conditions
(1.2) and (1.3), in the following form:
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Using the well-known Taylor expansion
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written in terms of the displacement operator
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we can represent the potential ® in the vicinity of the
k~th bubble in the following form:
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where the tensor Ai‘,f is determined as
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The boundary condition (1.2) can be used to deter-
mine the tensor 4.
In order to satisfy (1.2) with an accuracy to terms
of order (R/a)® inclusive, we must select A% so that
the condition
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is satisfied at rj = R.
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It can be shown by direct verification that the fol-
lowing tensor satisfies this condition:
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With an accuracy to the terms of order (R/a)® in-
clusive, the potential and its derivatives on the sur-
face of the k-th bubble can be expressed in the follow-
ing form:
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3. Kinematic energy of the liquid and the forces
acting on the sphere. Knowing the velocity field poten-
tial, it is possible to calculate the kinetic energy of
the liquid as an integral over the entire space occu-
pied by the liquid with density p

T ___%S(V@)Mi*r, or T——~—— S@ukgzdsk .1

Here the integration is carried out over the surface
of each sphere. The negative sign appears because
the normal to the surface Sk, which bounds the volume
of the liquid, acts in a direction opposite to £y, i.e.,
the unit vector of the exterior normal to the surface
of the k-th sphere,

Thus, we see that with an accuracy to the terms
of order (R/a)®

N
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In his monograph [3] Lamb calculates with the same accuracy
the kinetic energy of the liquid in which two spheres of any radius
move normal to and along the center line. The results agree with
Eq. (3.9).

The total energy of the entire system is the same as the kinetic
energy of the liquid, which can be represented as an integral over
the space occupied by the liquid or as the total energy of a system
of interacting spheres with additional masses moving in vacuum.

It should be noted that these two interpretations of the energy
of the system are analogous to the description of the energy of the
system in terms of the energy of the field and on the basis of the

theory of distant interaction in electrostatics.

The energy of a system of spheres cah be interpreted as a sum
of their kinetic energies and the energy of interaction. However,
the division of energy into kinetic and potential energies is not un-
ambiguous. It may be assumed that the first sum of (3.2) describes
the kinetic energy of spheres moving at velocities ny, with additional
masses equal to half the mass of the liquid in the volume of the bub-
ble. In this case the interaction energy may be considered as a sum
of dipole-dipole interactions between pairs of spheres traveling at
velocities u; and uy, where one has the same dipole moment as an
isolated sphere traveling at the velocity uy in an unbounded medium,
while the other travels as an isclated sphere with an effective veloc-
ity v{. We could include in the kinetic energy the terms of the sec-
ond sum of (3.2) which contain squares of the velocities. In the case
of such an interpretation the additional masses depend on the location
of all bubbles in the system.

Using a variational method Breakwell [4] showed
that a system of spheres in an ideal liquid is a La-
grangian system, Therefore, if an external force Fig
is acting on the k-th bubble the system of equations
describing the motion of the spheres must have the
following form:

d 8T  aT "
dat du,  or, k. (3.3)

In order to find the force Fy which acts on the k-th
bubble and which is produced as the result of the hy-
drodynamic interaction of bubbles traveling at speci-
fied velocities in a flow of ideal liquid, we assume
that the external force Fiz exactly balances the force
Fy.. It follows that
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Direct calculations show that this result is correct.
We denote by &; = & — u*r® the velocity field po-
tential in a system moving with the k-th bubble, Us-
ing the Bernoulli theorem, we can write

Fr = S [(V(Do)z + 6%] ExdSy . (3.5)

In the coordinate system moving with the k-th bub-
ble the total energy of the liquid T, is
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The terms which are independent of the coordinates
of the bubble centers are contained in "const." From
Eq. (3.6) it follows that
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Then, using (3.2) we can show that
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Equations (3.7) and (3. 8) confirm the relation (3.4),

which permits the calculation of Fi, from the known
kinematic energy of the system. Thus, we arrive at
the following result:
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The first term of (3.9) expanded in series in pow-
ers of (R/a)® is
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(3.10)

This result is in agreement with the Bjerkness
equation [5] for the force of interaction hetween two
spheres of different radii moving at the same speed,
and also with the expression for the force acting when
two spheres travel in the direction of their centers
with arbitrary velocities ([3], $§138).

Let us now consider the motion of spheres with the
same velocity under the condition that the center dis-
tance is commensurable with the sphere dimensions.
Then, according to (3.9) the force of the pairwise in-
teraction between bubbles moving at velocities u is
determined by an equation analogous to the Bjerkness
equation in which the actual velocities u are replaced
by the effective velocities v. In this case

Fy = oT / or,, . (8.11)

This type of the interrelation between the force
acting on the bubble and the energy of the system in
the case when the bubbles move at the same velocities
suggests the conclusion that the system tends to a
condition corresponding to a maximum of the total en-
ergy T calculated in the coordinate system in which
the liquid is at rest at infinity.

In a low-viscosity liquid the k-th sphere is acted
upon, in addition to force Fy, also by the frictional
force Qi which can be calculated via the rate of en-
ergy dissipation

\'k d
Q=57 Tx,

(3.12)
where the rate of energy dissipation during flow past
the k-th sphere is determined by an integral over the
surface of the k-th sphere:

d x OMy, 94Dy G
— L= 2pS§- w2 dSy,

(3.13)

where u is the dynamic viscosity of the liquid.

From (2.10) and (2.11) the result can be written
in the following form:

— Ty = 12mRr, (3.14)

This gives

Qk = — 12J‘LP,RV;‘- . (3_ 15)

Thus, a bubble traveling at velocity ui relative to
the liquid at rest at infinity experiences in the pres-
ence of a system of bubbles the same resistance as
an isolated bubble moving relative to the medium with
an effective velocity vy.

The motion of the bubbles is assumed to be steady.
Consequently, the sum of the forces (including the
buoyancy force) acting on the bubble must be zero,

Fk—l—Qk-—~—pR”‘g~0 (3.16)

where g is the acceleration due to gravity.

This equation permits the calculation of the veloc-
ity of a rising bubble as a function of its size and the
location of the other bubbles.

4. The Lorentz method. Lorentz's method [6] can be used to
calculate the sums contained in the expression for the effective
velocity provided that the following additional assumptions are
made: a) the velocities of all the rising bubbles in the system are
equal in magnitude and direction; b) the average distance between
bubble centers is constant for the entire system, i.e., the average
concentration of bubbles in the system ¢ = 4/3 TRY a® is constant,
and c) the system has the shape of an ellipsoid or a shape repre-
senting a limiting case of an ellipsoid (a sphere, a thin plate, or
a long circular cylinder).

If the centers of the bubbles are at the corners of a cubical
system, then

N
RS 3 uALP = (1 —3n;) ouf , (4.1)
i=1
where n¢ is the coefficient of depolarization of the ellipsoid (it is
assumed that the z axis coincides with the vector u,). It is known
that for a spheroid with semiaxes [y = ly <lg elongated along the
Z axis

—a)<t (e=1—2) e
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and for a spheroid with semiaxes & = ly > iz compressed in the di-
rection of the z axis

1+t 1. b
nzz———:g——(e—arctge)}—g- (e’—-—l—z—1) (4.3)

Kirkwood and Ivon (see, for example, [7]) showed that the re~-
sult (4.1) still applies for a geometrically uniform and isotropic
distribution of dipoles as the first term of a series expansion in
powers of the concentration.

5. System of bubbles in an unbounded liquid. If the
conditions listed in the previous section are satisfied,
then the force of hydrodynamic interaction of the bub-
bles Fy expressed by Eq. (3.9) is nonzero for any bub-
ble with the exception of those near the surface of the
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system. For bubbles contained in the body of the sys-
tem the dissipation force Qj is balanced by the buoy-
ancy force with the result that the effective speed of
a bubble vy is the same as the velocity of an isolated
rising bubble u,.

The relation (3.16) and Lorentz's method enable
the velocity of the k-th rising bubble belonging to the
system of bubbles to be expressed in terms of uy:

ue =uy 1 4 Y, (1 — 3n,)c]. (5.1)

It should be noted that for medium-size bubbles the
rising velocity depends on the radius in the following
way [2]:

n, = — 3, R%/v . (5.2)

Thus, if the system of bubbles has the shape of a
long circular cylinder (ngy = 0), then at the same con-
centration of bubbles it rises more rapidly than when
the system is spherical (ny = 1/3) or has the shape of
a thin plate (ngy = 1),

For the rise of a system of bubbles shaped as a
thin plate the results (5.1) can be explained as fol-
lows: as the bubbles rise at the velocity uy their
place is taken by liquid, which leads in the region oc~
cupied by bubbles to the formation of a descending
flow having a velocity —uge/(1 ~ ¢). Relative to the
liquid moving at an average velocity of —uic/(1 — c)
the bubble rises with the velocity wy, i.e., relative
to liquid at rest at infinity it rises with the velocity
up = uy(1 — ¢), which is in full agreement with the
special case of Eq. (5.1).

It is obvious that the correctness of this special
case is independent of the assumption that the bub-
bles are of medium size and have a spherical shape
and that the intervals between individual bubbles are
large compared with their dimensions. It is only im-
portant that the averaged motion of the liquid is one-
dimensional and that the gas content in the region oc-
cupied by the bubbles is constant. In [1] calculations
carried out for the cell model produced the following
result:

(4 — 30 /4ai)?

5.3
1—(3¢/4m)s ° (-3)

Up == Up

This result fails to take into account the dependence
of the velocity with which the bubble system rises on
its shape. In the region of small concentrations Eq.
(5.3) is in qualitative agreement with (5,2) only if
ng > 1/3.

Since the effective velocity vy was the same as the
velocity of a single isolated bubble u;, Eq. (3.12)
shows that the rate of energy dissipation during the
motion of a bubble in the system is the same as dur-
ing the motion of a single bubble, Thus, from the point
of view of the principle of minimum rate of energy dis-
sipation [4], no conclusions can be drawn on the shape
of the system,

The kinetic energy of the liguid dissipated during
steady motion is completely compensated by the work
of the external (buoyancy) force. For this reason the

kinetic energy of the liquid, which is equal to its total
energy, is independent of time and equals, with (3.2),
(4.1), and (5.1) taken into account,

T =T, (1 —Yme —Yned),

(To=1fapnRNu?, M=1—3n,) . (5.4)

The figure shows as éontinuous lines in a plane with
coordinates n,, ¢ the family of curves T/T0 = const,
while the family of orthogonal curves is indicated by
broken lines.
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The energy of the liquid reaches its maximum along
the curve c(ny) in the region n, > 1/2, which is deter-
mined by the relation

1
¢(n:) = 5=y - (6.5}

The system is deformed in the direction VT, i.e.,
along the corresponding broken curve passing through
the initial state in the direction of increasing energy,
as mentioned'in discussing Eq. (3.11).

In this case, if the initial state of the system is in
the region ¢ < 1/3 = ny of the ny, ¢ plane, i.e., if the
system is a low-concentration spheroid elongated in
the direction of its axis, then the bubbles of which the
system consists will tend to dissipate, so that the
shape of the system will approach a sphere.

If, however, the initial condition is in the region
1/3 — nz < ¢ < 1/3 (elongated spheroid with high bub-
ble concentration), then the system beging to spread
and deforms to a sphere, whereupon it tends to a con-
dition with a higher concentration, deforming in this
case to a slightly compressed spheroid. The deforma-
tion is complete when the system is in the state indi-
cated in the figure by the point of intersection of the
corresponding broken curve and the line c(ny) corre-
sponding to the maximum-energy condition,

In the case of a condition in the region ny > 1/3 at
¢ < ¢{ny) the system tends towards the condition with
ahigher concentration, while its shape tends to a more
compressed spheroid; at ¢ > c¢(ny) the deformation of
the system produces a less compressed spheroid and
is accompanied by a certain reduction of bubble concen-
tration, ‘

These large variations in deformation are due to a
competition in this process between the variation of
the system velocity and the energy of the dipole-di-
pole interaction.

These conclusions concerning the behavior of the
system hold if the distribution of bubbles during de-
formation of the system remains homogeneous and iso-
tropic.



46 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

6. Introduction of the finite size of the region occu-
pied by the liquid. Let us consider the motion of bub-
bles in a vertical column of liguid with finite dimen-
sions. As long as the region occupied by bubbles is
small in relation to the linear dimensions of the col-
umn, the rising velocity of the bubbles remains de-
pendent on the shape of the system and the concentra-
tion in a way described by expression (5.1). However,
if the dimensions of the region occupied by bubbles
are commensurable with those of the region occupied
by the liquid, the relation (5.1) cannot be used and
Eq. (1.1) must be solved with the conditions (1.2) and
(1.3) satisfied and with the additional condition that
the normal component of the velocity of the liquid van-
ishes on the lateral surface of the column,

The solution is obtained most easily if the following
requirements are met: 1) the distribution of bubbles
in the system is homogeneous and isotropic; 2) the
cross section of the column is a rectangle; and 3) the
bubbles occupy a region between two cross sections
of the column, '

It is obvious that in order to satisfy the Laplace
equation and all the boundary conditions it is necessary
in expressing the potential to add to the field induced
by the dipoles contained in the column a field of images
consisting of dipoles arranged with the same density
as the bubbles in the system outside the column in the
region occupied by the infinite layer between the cross
sections of the column,

Thus, it is necessary to solve the problem of the
motion of bubbles occupying a region shaped as a thin
plate and located in an infinite liquid medium. Regard-
less of the size of the column and the thickness of the
layer occupied by the bubbles the absolute velocity of
the rising bubbles which fill the space between two
transverse cross sections of the column with uniform
concentration is

6.1)

u =uy(1—e¢).

This result holds for a cylindrical column with any
cross section, since it is essential only that the average
motion of the liquid remain vertical, in which case
(6.1) is a consequence of the discussion concerning Eq.
(5.1). -The total energy of the system is, according to
(5.4),

T =Ty +c—2¢, (6.2)

This function has a maximum at ¢ = 0,25. The sys-
tem should tend toward a condition with such a concen~
tration only if the homogeneity and isotropy of the bub-
ble distribution in the system is retained during the
deformation process.

7. Continuous flow of bubbles, The case when the
system of bubbles rises in a vertical tube containing
a liquid with a continuous flow of bubbles being pro-
duced by a steady supply of air at its base requires
special consideration. ‘In such a case the average ve-
locity of the liquid in any cross section of the column
is zero and the absolute velocity of the rising bubbles
(denoted by w,*) is u, and remains independent of the
concentration of bubbles in the system.

Davidson and Harrison {8] believe that for a con~
tinuous flow of air through the column the absolute ve-
locity of the rising bubbles exceeds the velocity with
which each individual bubble rises in the stationary
liguid. In our notation their result has the following
form:

G G .
wr=t =g (gew). (7L1)

Here G/A is the average velocity of gas in the free
cross section of the column.

Equation (7.1) holds for sufficiently small periods
of time when the bubbles have no time to reach the
upper phase interface. In this case, in fact, the av-
erage velocity of the liquid in the cross section above
the bubbles is G/A and, because the relative velocity
is constant, Eq. (7.2) follows. However, if the con-
tinuous flow of bubbles in the column is of longer du-
ration, then, because the average velocity of the lig-
uid in any cross section of the column is zero, Eq.
(7.1) is no longer correct.

Nicklin [9] showed the relationship between the ab-
solute velocities of rising bubbles produced as a re-
sult of a continuous supply of air and that of bubbles
occupying the space in the liquid between two cross
sections

u =w* —G /A4, (7.2)
which, obviously, agrees with the results obtained in
the present paper.

The total energy of the system during continuous
flow of gas through the column is

™ =T,(1+2). (7.3)

It follows from this equation that in the case of ho-
mogeneity and isotropy of the bubble distribution the
system tends toward a condition with a higher concen-
tration, which may result in a narrowing of the cross-
sectional dimensions of the region occupied by bubbles
in the direction of rise. Inhomogeneity of the gas con-
tent may result in a convection flow in the system.

Experiments [10, 11] clearly indicate an increase
of the velocity of rising bubbles with increasing gas
content, This can be caused by an increased coagula-
tion of bubbles, which results in an increase of their
average size and, consequently, in an increase oftheir
velocity; by the convection flow of liquid in the column;
or by the formation of "clusters," i.e., by accumula-
tion of bubbles rising approximately as a single solid
body with a velocity which is considerably higher than

. the velocity of an individual isolated bubble. In this

case the liguid flow passes not round each individual
bubble separately, but round an entire "cluster,”

Attempts to explain the experimental results of
[10, 11} on the basis of Eq, (7.1), which is irrelevant
to the case in point, are useless.
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