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HYDRODYNAMICS OF A SYSTEM OF BUBBLES IN A LOW-VISCOSITY LIQUID 
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This  pape r  deals  wi th  the  e f fec t  of  t he  gas con t en t  and  t h e  shape  o f  

the  space  o c c u p i e d  by a sys tem o f  bubbles  on the rate a t  w h i c h  the 
bubbles rise in an infinite medium and in a vertical cylindrical 
column. Deformations of the ~ystem favorabie from the energy 
point of view are considered for an assumed homogeneous and iso- 
tropic distribution of bubbles in the system. 

A theoretical description of the motion of gas bubble systems in 
liquids is necessary for the study of bubbling p~ocesses. This prob- 
lem has been frequently considered for low Reynolds numbers 
(Re << 1) on the basis of the so-called cell model. In [1] an anal- 
ogous model was used to describe the motion of a system ofmedinm- 
size bubbles (Re < 300). It was assumed that each bubble is at any 
instant of time in the center of an imaginary spherical Cell of liquid 
the radius of which equals the average distance between the centers 
of bubbles in the system. The normal component of the velocity of 
the liquid and the surface of the cell is zero. The former assump- 
tion is equivalent to the assumption of homogeneity and isotropy of 
the system, but the latter is by no means physically convincing. 
In the present paper we calculam the rising velocity of a system of 
medium-size bubbles in a liquid with low gas content; these results 
differ even quatitatively from those obtained on the basis of the 
cell model. This apparently suggests that the cell model is un- 
satisfactory, at least in the case of a liquid with low gas content. 

1 .  F o r m u l a t i o n  of  the p r o b l e m .  It is  a s s u m e d  that  
al l  bubbles have the s a m e  rad ius  R and the r i s i n g  v e -  
loc i ty  of the bubbles  i s  independent  of  t ime .  Levich  
[2] showed that  the mot ion  of  a s ingle  bubble with r a -  

dius R < 0 .05 c m  in a l iquid with a k inemat i c  v i s c o s i t y  
v ~ 0 .01 c m 2 / s e c  is  a p p r o x i m a t e l y  the s a m e  as that  

of an ideal  l iquid p rov ided  that  s u r f a c e - a c t i v e  sub~ 

s t ances  a r e  absent .  T h e r e f o r e  as a f i r s t  a p p r o x i m a -  
t ion for  a s y s t e m  of m e d i u m - s i z e  gas  bubbles  for  
which a ( ave rage  c e n t e r  d i s tance)  i s  much  l a r g e r  than 
the bubble d imens ions  we may a s s u m e  an i r r o t a t i o n a l  
flow of an ideal  l iquid about a s y s t e m  of N spheres ,  
the c e n t e r s  of  which a r e  loca ted  at  points  r i with co-  

n ( ~ =  1, 2, 3, i = l ,  N). o rd ina t e s  r i . . . .  
In o r d e r  to d e t e r m i n e  the ve loc i t y  of the potent ia l  

flow v = V~ it  i s  n e c e s s a r y  to so lve  the Lap lace  equa-  
t ion 

A @ = 0 in the region,  except  f o r  r~' < R ,  

r(  = I r~'l, r(  = r - -  r, , (1.1) 

with boundary  condi t ions  e x p r e s s i n g  the fact  that  the 
rad ia l  component  of the flow ve loc i t y  van i shes  on the 
su r f ace  of the i - t h  sphe re  in a coord ina te  s y s t e m  m o v -  
ing with the i - t h  sphere  

~ , ( - ~ g ~  r  as 

( i=1  . . . . .  N), 

/r 

(1.2) 

whe re  u~~ the ve loc i t y  component  of the i - t h  bubble.  
In (1.2) and in what fo l lows we take the summat ion  

with r e s p e c t  to the r epea t ed  G r e e k  ind ices .  We seek  

in a coord ina te  s y s t e m  in which the l iquid i s  at r e s t  
as  r - * ~  It i s  obvious that  th is  can be ach ieved  by 
impos ing  the condi t ion 

r  a s  r - - , o ~ .  ( 1 . 3 )  

2. Ve loc i ty  f ie ld  potent ia l .  We seek  the solut ion of 
Eq. (1.1), which s a t i s f i e s  the boundarY condit ions 
(1.2) and (1.3), in the fol lowing fo rm:  

R 8 , R s N 

�9 = - - T  .= ~ q~,P ' V~ = u~ - -  -~=,~V~A~'.(2.1) 

Using the we l l -known T a y l o r  expansion 

t (  a Or a \ r~k I or, k "ik / 

w r i t t en  in t e r m s  of  the d i s p l a c e m e n t  o p e r a t o r  

(2.3) 
r i ~ = r i - r ~  j ' 

we can r e p r e s e n t  the potent ia l  �9 in the v ic in i ty  of the 
k - th  bubble in the fol lowing fo rm:  

u~r k f f~ = _  R 8 �9 ,~, 

2 /# + 

N N ) R 6 r~ t~ 0 i R a ~ '  v.~ +-~- Y, v, A~2 S**-~ .(2.4) 

It fol lows that  at  r~ = R 

N 

2 Y ,  o4 o;~, + 
N 

Rs 
+ -y-  ~ v~:~ss~A~ ~ , (2.5) 

where  the t e n s o r  A~  is  de t e rmined  as 

A~, ~ -  o, A~2 = 3 4 4  8,~ 
t fi 

(2.6) 
x ft ,  (a = ]3) 

The boundary condi t ion (1.2) can be used to d e t e r -  
mine  the t e n s o r  A~.  

In o r d e r  to sa t i s fy  (1.2) with an a c c u r a c y  to t e r m s  
of o r d e r  (R/a)  6 inc lus ive ,  we mus t  s e l e c t  A ~  so that  
the condi t ion 

2 Or" k A ~ ,  -}- S ~ A ~  = 0 ( 2 . 7 )  

is sa t i s f i ed  at r~  = R. 
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I t  c a n  b e  s h o w n  b y  d i r e c t  v e r i f i c a t i o n  t h a t  t h e  f o l -  
l o w i n g  t e n s o r  s a t i s f i e s  t h i s  c o n d i t i o n :  

Ar$ = 2;;? [i - - ( i  + ;,~) ~-~,q Ar~, 

4" o (2.  s )  

W i t h  a n  a c c u r a c y  to  t h e  t e r m s  of  o r d e r  ( R / a )  ~ i n -  
e l u s i v e ,  t h e  p o t e n t i a l  and  i t s  d e r i v a t i v e s  on  t h e  s u r -  

f a c e  o f  t h e  k - t h  b u b b l e  c a n  be  e x p r e s s e d  in  t h e  f o l l o w -  
i ng  f o r m :  

1V g ~ N 
R a R~ ~ v i r ik  H~ ~ ~Da~f~  

~ = - - ' - Z - u ~ g ~ + - ' ~  ~ 7 + - g - Z . ~ v i ~ i ~ , ( 2 . 9  ) 
i=1 r.ik i = l  

N 
0(D 3 U~e~e I ~ R~ %n ~,..,ev,t~v (2 i0) 

Orb'Or ~ 

N 

. . . . .  ~ u ~  .-1- -ff u~ - - - - i f -  ~ vi~Dt~ A ~  , 

N 
~ /~ N~ ~ ,(2. II) v i = u~ - -  - g -  f.~ ~ i ~  , 

2 

8 
0 2 2 n + 3  /7 n+1 %, " 0 n 

3 
av __ 0 ~ 2 n + 3 - . . . . . 7 . R  \ ( n + l ) ( n + a ) r ~ , ~ ( _ _ r ~  'a  0 n 

3. K i n e m a t i c  e n e r g y  of  t h e  l i q u i d  and  t h e  f o r c e s  

a c t i n g  o n  t h e  s p h e r e .  K n o w i n g  t h e  v e l o c i t y  f i e l d  p o t e n -  

t i a l ,  i t  i s  p o s s i b l e  to  c a l c u l a t e  t h e  k i n e t i c  e n e r g y  of 

t h e  l i q u i d  a s  a n  i n t e g r a l  o v e r  t h e  e n t i r e  s p a c e  o c c u -  

p i e d  b y  t h e  l i q u i d  w i t h  d e n s i t y  p 

N 

r =--~ (Vr  ~dsr, o r  T = - - ~  ~ @ u ~ d S ~ . ( 3 . 1 )  

H e r e  t h e  i n t e g r a t i o n  i s  c a r r i e d  ou t  o v e r  t h e  s u r f a c e  

of  e a c h  s p h e r e .  T h e  n e g a t i v e  s i g n  a p p e a r s  b e c a u s e  

t h e  n o r m a l  to  t h e  s u r f a c e  S k, Which  b o u n d s  t h e  v o l u m e  

of  t h e  l i q u i d ,  a c t s  in  a d i r e c t i o n  o p p o s i t e  to  ~k, i . e . ,  

t h e  u n i t  v e c t o r  of t h e  e x t e r i o r  n o r m a l  to  t h e  s u r f a c e  

of  t h e  k - t h  s p h e r e .  
T h u s ,  we  s e e  t h a t  w i t h  a n  a c c u r a c y  to t he  t e r m s  

o f  o r d e r  ( R / a )  ~ 

N N 
ztpBS ( ~=~ ~ 3Ra - v~A~,,~ ( 3 . 2 )  

i, k ~ l  

In his monograph [3] Lamb calculates with the same accuracy 
the kinetic energy of the liquid in which two spheres of any radius 
move normal to and along the center line. The results agree with 
Eq. (3.2). 

The total energy of the entire system is the same as the kinetic 
energy of the liquid, which can be represented as an integral over 
the space occupied by the liquid or as the total energy of a system 
of interacting spheres with additional masses moving in vacuum. 

It should be noted that these two interpretations of the energy 
of the system are analogous to the description of the energy of the 
system in terms of the energy of the field and on the basis of the 

theory of distant interaction in electrostatics. 
The energy of a system of spheres can be interpreted as a sum 

of their kinetic energies and the energy of interaction. However, 
the division of energy into kinetic and potential energies is not un- 
ambiguous. It may be assumed that the first sum of (3.2) describes 
the kinetic energy of spheres moving at velocities u k with additional 
masses equal to half the mass of the liquid in the volume of the bub- 
ble. In this case the interaction energy may be considered as a sum 
of dip01e-dipole interactions between pairs of spheres traveling at 
velocities u i and u k, where one has the same dipole moment as an 
isolated sphere traveling at the velocity u k in an unbounded medium, 
while the other travels as an isolated sphere with an effective veloc- 
ity v i. We could include in the kinetic energy the terms of the sec- 
ond sum of (3.2) which contain squares of the velocities, in the case 
of such an interpretation the additional masses depend on the location 
of alI bubbles in the system. 

U s i n g  a v a r i a t i o n a l  m e t h o d  B r e a k w e l l  [4] s h o w e d  

t h a t  a s y s t e m  of  s p h e r e s  in  a n  i d e a l  l i q u i d  i s  a L a -  

grangian system, Therefore, if an external force F~ 
is acting on the k-th bubble the system of equations 
describing the motion of the spheres must have the 
following form: 

d OT OT _ F ;  ( 3 . 3 )  
dt Ou k Or~ 

In  o r d e r  to  f ind  t h e  f o r c e  F k w h i c h  a c t s  o n  t h e  k - t h  
b u b b l e  and  w h i c h  i s  p r o d u c e d  a s  t h e  r e s u l t  of  t h e  h y -  

d r o d y n a m i c  i n t e r a c t i o n  of  b u b b l e s  t r a v e l i n g  a t  s p e c i -  

f i ed  v e l o c i t i e s  in  a f l ow  of  i d e a l  l i qu id ,  w e  a s s u m e  
t h a t  t h e  e x t e r n a l  f o r c e  F ~  e x a c t l y  b a l a n c e s  t h e  f o r c e  

F k.  I t  f o l l o w s  t h a t  

N 
F =~ Y,u  o or 

0 4 ~=~ 0~ 0 ~ "  (3.4) 

D i r e c t  c a l c u l a t i o n s  s h o w  t h a t  t h i s  r e s u l t  i s  c o r r e c t .  

We  d e n o t e  by  ~0 = ~ - Uk ~rc~ t h e  v e l o c i t y  f i e l d  p o -  
t e n t i a l  i n  a s y s t e m  m o v i n g  w i t h  t h e  k - t h  b u b b l e .  U s -  

i ng  t h e  B e r n o u l l i  t h e o r e m ,  w e  c a n  w r i t e  

ot J ~kdSk . ( 3 . 5 )  

In  t h e  c o o r d i n a t e  s y s t e m  m o v i n g  w i t h  t h e  k - t h  b u b -  

b l e  t h e  t o t a l  e n e r g y  of  t h e  l i q u i d  T O i s  

N 

To = 7 = q ) u ~ n d S n  , eonst  

(3.6) 
T - -  p u ~  ~ + eonst  (u~ ~ % --  % ) .  

T h e  t e r m s  w h i c h  a r e  i n d e p e n d e n t  of  t h e  c o o r d i n a t e s  

o f  t h e  b u b b l e  c e n t e r s  a r e  c o n t a i n e d  i n  " c o n s t ,  ~ F r o m  

Eq .  (3 ,6 )  i t  f o l l o w s  t h a t  
N 

IV 

S 0r162 S _2_ y, -x~-.k.s~-o~= p (vr (3.7) 
2 n=l Ork 
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T h e n ,  u s i n g  ( 3 . 2 ) w e  c a n  show t h a t  

N 

N hr 

- -  --2 ~Or  n P i n . ' k m k  
n ~ t  n , m ~ l  

N 

E q u a t i o n s  (3 .7 )  and  ( 3 . 8 )  c o n f i r m  t h e  r e l a t i o n  (3.4), 
w h i c h  p e r m i t s  t h e  c a l c u l a t i o n  of  F k f r o m  t h e  "known 
k i n e m a t i c  e n e r g y  of t he  s y s t e m .  T h u s ,  we a r r i v e  a t  
t h e  f o l l o w i n g  r e s u l t :  

/~k = npR" - i= ,  v~ ar~k v~ x +i.Z~=,= ui - ~ r f i - - ] '  ( 3 .9 )  

T h e  f i r s t  t e r m  of  (3 .9 )  e x p a n d e d  in  s e r i e s  in  p o w -  
e r s  o f  ( R / a )  3 i s  

F~ = ~ R  s ~, u~ OA~ u~ 
~=, 0r--~.~ ~ �9 (3 .10 )  

T h i s  r e s u l t  i s  in  a g r e e m e n t  w i th  t h e  B j e r k n e s s  
e q u a t i o n  [5] f o r  t h e  f o r c e  of  i n t e r a c t i o n  b e t w e e n  two 

s p h e r e s  o f  d i f f e r e n t  r a d i i  m o v i n g  a t  t h e  s a m e  s p e e d ,  

and  a l s o  w i t h  t he  e x p r e s s i o n  f o r  t h e  f o r c e  a c t i n g  w h e n  
two s p h e r e s  t r a v e l  in  t h e  d i r e c t i o n  of  t h e i r  c e n t e r s  
w i t h  a r b i t r a r y  v e l o c i t i e s  ([3] ,  w 

Le t  us  now c o n s i d e r  t he  m o t i o n  o f  s p h e r e s  w i th  t he  
s a m e  v e l o c i t y  u n d e r  t h e  c o n d i t i o n  t h a t  t he  c e n t e r  d i s -  

t a n c e  i s  c o m m e n s u r a b l e  w i t h  t he  s p h e r e  d i m e n s i o n s .  
T h e n ,  a c c o r d i n g  to ( 3 . 9 )  t h e  f o r c e  of  t h e  p a i r w i s e  i n -  

t e r a c t i o n  b e t w e e n  b u b b l e s  m o v i n g  at v e l o c i t i e s  u i s  

d e t e r m i n e d  b y  an  e q u a t i o n  a n a l o g o u s  to  t h e  B j e r k n e s s  
e q u a t i o n  in w h i c h  t he  a c t u a l  v e l o c i t i e s  u a r e  r e p l a c e d  
by  t h e  e f f e c t i v e  v e l o c i t i e s  v .  In t h i s  c a s e  

Fk ~- OT / 0r~  . ( 3 . 1 1 )  

T h i s  t ype  of  t he  i n t e r r e l a t i o n  b e t w e e n  t he  f o r c e  
a c t i n g  on  t he  b u b b l e  and  t h e  e n e r g y  of  t he  s y s t e m  in  
t h e  c a s e  w h e n  t h e  b u b b l e s  m o v e  at  t h e  s a m e  v e l o c i t i e s  

s u g g e s t s  t h e  c o n c l u s i o n  t h a t  t h e  s y s t e m  t e n d s  to a 
c o n d i t i o n  c o r r e s p o n d i n g  to a m a x i m u m  of  t he  t o t a l  e n -  
e r g y  T c a l c u l a t e d  in  t h e  c o o r d i n a t e  s y s t e m  in  w h i c h  
t he  l iqu id  i s  a t  r e s t  a t  i n f i n i t y .  

In a l o w - v i s c o s i t y  l i qu id  t h e  k - t h  s p h e r e  i s  a c t e d  

upon,  in  a d d i t i o n  to  f o r c e  Fk,  a l s o  b y  t h e  f r i c t i o n a l  
f o r c e  Qk w h i c h  c a n  b e  c a l c u l a t e d  v ia  t h e  r a t e  of  e n -  
e r g y  d i s s i p a t i o n  

v~ d 
Q~ = ~ --~ T~ , ( 3 .12 )  

w h e r e  t h e  r a t e  of  e n e r g y  d i s s i p a t i o n  d u r i n g  f low p a s t  
t he  k - t h  s p h e r e  i s  d e t e r m i n e d  by  a n  i n t e g r a l  o v e r  t he  
s u r f a c e  of  t h e  k - t h  s p h e r e :  

I oo)o o'-',I)o dS~ (3 13) dtd Tk  = __ 2~ ~ Or;' Or~Or ~ ' " 

w h e r e  p i s  t h e  d y n a m i c  v i s c o s i t y  of  t h e  l i q u i d .  
F r o m  (2 .10 )  and  (2 .11 )  t he  r e s u l t  c a n  b e  w r i t t e n  

in  t he  f o l l o w i n g  f o r m :  

d Tk = t2npRvk 2 (3 .14 )  
d t  

T h i s  g i v e s  

Qr = - i2ni aRvk . ( 3 .15 )  

T h u s ,  a b u b b l e  t r a v e l i n g  a t  v e l o c i t y  u k r e l a t i v e  to  
t h e  l i qu id  a t  r e s t  a t  i n f i n i t y  e x p e r i e n c e s  in  t he  p r e s -  
e n c e  of  a s y s t e m  o f  b u b b l e s  t h e  s a m e  r e s i s t a n c e  a s  

a n  i s o l a t e d  b u b b l e  m o v i n g  r e l a t i v e  to t h e  m e d i u m  wi th  

a n  e f f e c t i v e  v e l o c i t y  v k.  
T h e  m o t i o n  of  t he  b u b b l e s  i s  a s s u m e d  to b e  s t e a d y .  

C o n s e q u e n t l y ,  t h e  s u m  of  t h e  f o r c e s  ( i n c l u d i n g  t h e  
b u o y a n c y  f o r c e )  a c t i n g  on  t h e  b u b b l e  m u s t  b e  z e r o ,  

Fk q- Q~ - -  ~3- p ~ ' g  = 0 ,  (3 .16 )  

w h e r e  g i s  t he  a c c e l e r a t i o n  due  to  g r a v i t y .  
T h i s  e q u a t i o n  p e r m i t s  t he  c a l c u l a t i o n  o f  t he  v e l o c -  

i ty  of  a r i s i n g  b u b b l e  a s  a f u n c t i o n  o f  i t s  s i z e  and  t he  
l o c a t i o n  of  t h e  o t h e r  b u b b l e s .  

4. The Lorentz method. Lorentz's method [6] can be used to 
calculate the sums contained in the expression for the effective 
velocity provided that the following additional assumptions are 
made: a) the velocities of all the rising bubbles in the systerd are 
equal in magnitude and direction; b) the average distance between 
bubble centers is constant for the entire system, i .e . ,  the average 
concentration of bubbles in the system c = 4/,q ~r RS/a 3 is constant, 
and c) the system has the shape of an ellipsoid or a shape repre- 
senting a limiting case of an ellipsoid (a sphere, a thin plate, or 
a long circular cylinder). 

If the centers of the bubbles are at the corners of a cubical 
system, then 

N 
R s ~ u~A~ ~ (t --  3nz) cu~k, (4.1) 

i = l  

where n c is the coefficient of depolarization of the ellipsoid (it is 
assumed that the z axis coincides with the vector Uk). It is known 
that for a spheroid with semiaxes l x = ly < l z elongated along the 
z axis 

, - - e ' ,  

and for a spheroid with semiaxes bx = ~y > l z compressed in the di- 
rection of the z axis 

t ~ e  '~ �9 . t 
n z = ~  ( e - - a r c t g  e) ~ x i ) .  ( 4 . 3 )  

Kirkwood and Ivon (see, for example, [7]) showed that the re- 
sult (4.1) still applies for a geometrically uniform and tsotropic 
distribution of dipoles as the first term of a series expansion in 
powers of the concentration. 

5. S y s t e m  of  b u b b l e s  in  a n  u n b o u n d e d  l i q u i d .  I f  t h e  
c o n d i t i o n s  l i s t e d  in  t he  p r e v i o u s  s e c t i o n  a r e  s a t i s f i e d ,  

t h e n  t h e  f o r c e  of  h y d r o d y n a m i c  i n t e r a c t i o n  of  t h e  b u b -  
b l e s  ~ e x p r e s s e d  b y  Eq .  (3 .9 )  i s  n o n z e r o  f o r  a n y  b u b -  
b l e  w i t h  t h e  e x c e p t i o n  o f  t h o s e  n e a r  t h e  s u r f a c e  of  t h e  
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system. For bubbles contained in the body of the sys- 
tem the dissipation force Qk is balanced by the buoy- 
ancy force with the result that the effective speed of 

a bubble v k is the same as the velocity of an isolated 
rising bubble u 0. 

The relation (3.16) and Lorentz's method enable 
the velocity of the k-th rising bubble belonging to the 
system of bubbles to be expressed in terms of u0: 

u~ - -  u0 [t + ~/~ (t - -  3n~)c]. (5.1)  

It should be  noted tha t  fo r  m e d i u m - s i z e  bubb le s  the 
r i s i n g  v e l o c i t y  depends  on the r a d i u s  in the fo l lowing 
way [2]: 

u0 -~ - -  110 R2g/v  . (5.2) 

Thus, if the system of bubbles has the shape of a 

long circular cylinder (n z = 0), then at the same con- 
centration of bubbles it rises more rapidly than when 
the system is spherical (n z = I/3) or has the shape of 
a thin plate (nz = I). 

For the rise of a system of bubbles shaped as a 
thin p l a t e  the  r e s u l t s  (5.1) can  be exp la ined  as  fo l -  
lows:  as  the  bubbles  r i s e  at the  v e l o c i t y  u k t h e i r  
p l a c e  is  t aken  by  l iquid,  which l e a d s  in the r eg ion  o c -  
cupied  by bubb le s  to the  f o r m a t i o n  of  a de scend ing  
f low having  a ve loc i t y  -UkC/(1 - c).  Re la t ive  to the  
l iquid mov ing  at an a v e r a g e  ve loc i t y  of  -UkC/(1 - c) 
the  bubble  r i s e s  with the  v e l o c i t y  u0, i . e . ,  r e l a t i v e  
to liquid at rest at infinity it rises with the velocity 

u k = u0(l - c), which is in full agreement with the 
special case of Eq. (5. I). 

It is obvious that the correctness of this special 
case is independent of the assumption that the bub- 
bles are of medium size and have a spherical shape 
and that the intervals between individual bubbles are 
large compared with their dimensions. It is only im- 
pop'rant that the averaged motion of the liquid is one- 
dimensional and that the gas content in the region oc- 
cupied by the bubbles is constant. In [i] calculations 
carried out for the cell model produced the following 
re suit: 

(~ - -  3c 14a) ~ (5.3) 
u~=u0  t--(3c/4~) ~/~ " 

This result fails to take into account the dependence 
of the velocity with which the bubble system rises on 

its shape. In the region of small concentrations Eq. 
(5.3) is in qualitative agreement with (5.2) only if 

n z > 1/3. 
Since the effective velocity v k was the same as the 

velocity of a single isolated bubble u0, Eq. (3.12) 
shows that the rate of energy dissipation during the 

motion of a bubble in the system is the same as dur- 
ing the motion of a single bubble. Thus, from the point 
of view of the principle of minimum rate of energy dis- 

sipation [4], no conclusions can be drawn on the shape 

of the system. 
The kinetic energy of the liquid dissipated during 

steady motion is completely compensated by the work 
of the external (buoyancy) force. For this reason the 

Idnetic energy of the liquid, which is equal to its total 
energy, is independent of time and equals, with (3.2), 
(4. I), and (5. I) taken into account, 

- -  - - / ~ i  c ) ,  
(To~!/aPgBaNuo~, ~li= l --3nz) . (5.4) 

The f igu re  s h o w s a s  Continuous l ines  in a p lane  with 
c o o r d i n a t e s  nz, c the f ami ly  of c u r v e s  T / T  o = const ,  
whi le  the  f a m i l y  of  o r thogona l  c u r v e s  i s  i nd ica t ed  by 
b r o k e n  l i n e s .  

04 ~ /// , I 

0 : o z 1 

The energy of the liquid reaches its maximum along 
the curve c(nz) in the region n z > I/2, which is deter- 
mined by the relation 

1 
c ( n z ) - -  2(3nz_l) . (5.5) 

The s y s t e m  i s  d e f o r m e d  in the  d i r e c t i o n  ~TT, i . e . ,  
a long the c o r r e s p o n d i n g  b r o k e n  c u r v e  p a s s i n g  th rough  
the in i t i a l  s t a t e  in the  d i r e c t i o n  of i n c r e a s i n g  energy ,  
as mentioned'in discussing Eq. (3.11). 

In this case, if the initial state of the system is in 
the regionc < 1/3 =- n z of thenz, cplane, i.e., if the 
system is a low-concentration spheroid elongated in 
the direction of its axis, then the bubbles of which the 
system consists will tend to dissipate, so that the 
shape of the system will approach a sphere. 

If, however, the initial condition is in the region 

i/3 , n z < e < 1/3 (elongated spheroid with high bub- 
ble concentration), then the system begins to spread 
and deforms to a sphere, whereupon it tends to a con- 
dition with a higher concentration, deforming in this 
case to a slightly compressed spheroid. The deforma- 
tion is complete when the system is in the state indi- 
cated in the figure by the point of intersection of the 

corresponding broken curve and the line c(nz) corre- 
sponding to the maximum-energy condition. 

In the case of a condition in the region n z > 1/3 at 
c < c (nz) the system tends towards the condition with 
a higher concentration, while its shape tends to a more 
compressed spheroid; at c > C(nz) the deformation of 
the system produces a less compressed spheroid and 
is accompanied by a certain reduction of bubble concen- 

tration. 
These large variations in deformation are due to a 

competition in this process between the variation of 
the system velocity and the energy of the dipole-di- 

pole interaction. 

These conclusions concerning the behavior of the 
system hold if the distribution of bubbles during de- 

formation of the system remains homogeneous and iso- 

tropic. 
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6. Introduction of the f inite  s i z e  of the reg ion  o c c u -  
pied by the liquid. Let us consider the motion of bub- 
bles in a vertical  column of liquid with finite dimen- 
sions. As long as the region occupied by bubbles is 
small  in relation to the l inear dimensions of the col-  
umn, the rising velocity of the bubbles remains de- 
pendent on the shape of the sys tem and the concentra-  
tion in a way described by expression (5.1). However, 
if the dimensions of the region occupied by bubbles 
are  commensurable with those of the region occupied 
by the liquid, the relation (5.1) cannot be used and 
Eq. (1.1) must be solved with the conditions (1.2) and 
(1.3) satisfied and with the additional condition that 
the normal component of the velocity of the liquid van '  
ishes on the lateral  surface of the column. 

The solution is obtained most  easily if the following 
requirements are  met: 1) the distribution of bubbles 
in the system is homogeneous and isotropie; 2) the 
c ross  section of the column is a rectangle; and 3) the 
bubbles occupy a region between two cross  sections 
of the column. 

It is obvious that in order  to satisfy the Laplace 
equation and all the boundary conditions it is necessary 
in expressing the potential to add to the field induced 
by the dipoles contained in the column a field of images 
consisting of dipoles arranged with the same density 
as the bubbles in the system outside the column in the 
region occupied by the infinite layer  between the c ross  
sections of the column. 

Thus, it is necessary  to solve the problem of the 
motion of bubbles occupying a region shaped as a thin 
plate and located in an infinite liquid medium. Regard- 
less of the size of the column and the thickness of the 
layer  occupied by the bubbles the absolute velocity of 
the rising bubbles which fill the space between two 
t ransverse  c ross  sections of the column with uniform 
concentration is 

u~ = u0 (1 - -  c). ( 6 . 1 )  

This result  holds for a cylindrical column with any 
cross  section, since it is essential only that the average 
motion of the liquid remain vertical,  in which case 
(6.1) is a consequence of the discussion concerning Eql 
(5.1). The total energy of the system is, according to 
(5.4), 

T = T0(l + c--2c~), (6.2) 

This function has a maximum at c = 0.25. The sys-  
tem should tend toward a condition with such a concen- 
tration only if the homogeneity and isotropy of the bub- 
ble distribution in the system is retained during the 
deformation process .  

7. Continuous flow of bubbles. The case when the 
system of bubbles r i ses  in a vertical  tube containing 
a liquid with a continuous flow of bubbles being pro-  
duced by a steady supply of a ir  at its base requires 
special cons idera t ion .  In such a case the average ve- 
locity of the liquid in any c ross  section of the column 
is zero and the absolute velocity of the rising bubbles 
(denoted by Uk*) is u 0 and remains independent of the 
concentration of bubbles in the system. 

Davidson and Harrison [8] believe that for a con- 
tinuous flow of air  through the column the absolute ve- 
locity of the rising bubbles exceeds the velocity with 
which each individual bubble r ises  in the stationary 
liquid. In our notation their result  has the following 
form: 

o u ~  .) 
u ~ * = u 0 + ~ =  i ' c  -----cu~ . (7 .1)  

Here G/A is the average velocity*of gas in the free 
c ross  section of the column. 

Equation (7.1) holds for sufficiently small periods 
of time when the bubbles have no time to reach the 
upper phase interface. In this case, in fact, the av- 
erage velocity of the liquid in the cross  section above 
the bubbles is G/A and, because the relative velocity 
is constant, Eq. (7.2) follows. However, if the con- 
tinuous flow of bubbles in the column is of longer du- 
ration, then, because the average velocity of the liq- 
uid in any cross  section of the column is zero, Eq. 
(7.1) is no longer correc t .  

Nicklin [9] showed the relationship between the ab- 
solute velocities of rising bubbles produced as a re -  
sult of a continuous supply of a ir  and that of bubbles 
occupying the space in the liquid between two cross  
sections 

u~ =u~*  - - G / A ,  (7 .2)  

which, obviously, agrees with the results obtained in 
the present  paper. 

The total energy of the system during continuous 
flow of gas through the column is 

T* = T O (J + 2c). (7.3) 

It follows from this equation that in the case of ho- 
mogeneity and isotropy of the bubble distribution the 
system tends toward a condition with a higher concen- 
tration, which may result  in a narrowing of the c ros s -  
sectional dimensions of the region occupied by bubbles 
in the direction of r ise.  Inhomogeneity of the gas con- 
tent may result  in a convection flow in the system. 

Experiments [10, 11] clear ly indicate an increase 
of the velocity of rising bubbles with increasing gas 
content. This can be caused by an increased coagula- 
tion of bubbles, which results in an increase of their 
average size and, consequently, in an increase of their  
velocity; by the convection flow of liquid in the column; 
or  by the formation of nclusters," i . e . ,  by accumula- 
tion of bubbles rising approximately as a singie solid 
body with a velocity which is considerably higher than 
the velocity of an individual isolated bubble. In this 
case the liquid flow passes  not round each individual 
bubble separately, but round an entire Wcluster.n 

Attempts to explain the experimental results of 
[10, 11] on the basis of Eq. (7.1), which is irrelevant 
to the case in point, are useless .  
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